Full Content is available to subscribers

Subscribe/Learn More  >

Concurrent Surrogate Model Selection (COSMOS) Based on Predictive Estimation of Model Fidelity

[+] Author Affiliations
Souma Chowdhury

Mississippi State University, Starkville, MS

Ali Mehmani

Syracuse University, Syracuse, NY

Achille Messac

Mississippi State University, Mississippi State, MS

Paper No. DETC2014-35358, pp. V02BT03A026; 16 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 40th Design Automation Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4632-2
  • Copyright © 2014 by ASME


One of the primary drawbacks plaguing wider acceptance of surrogate models is their low fidelity in general. This issue can be in a large part attributed to the lack of automated model selection techniques, particularly ones that do not make limiting assumptions regarding the choice of model types and kernel types. A novel model selection technique was recently developed to perform optimal model search concurrently at three levels: (i) optimal model type (e.g., RBF), (ii) optimal kernel type (e.g., multiquadric), and (iii) optimal values of hyper-parameters (e.g., shape parameter) that are conventionally kept constant. The error measures to be minimized in this optimal model selection process are determined by the Predictive Estimation of Model Fidelity (PEMF) method, which has been shown to be significantly more accurate than typical cross-validation-based error metrics. In this paper, we make the following important advancements to the PEMF-based model selection framework, now called the Concurrent Surrogate Model Selection or COSMOS framework: (i) The optimization formulation is modified through binary coding to allow surrogates with differing numbers of candidate kernels and kernels with differing numbers of hyper-parameters (which was previously not allowed). (ii) A robustness criterion, based on the variance of errors, is added to the existing criteria for model selection. (iii) A larger candidate pool of 16 surrogate-kernel combinations is considered for selection — possibly making COSMOS one of the most comprehensive surrogate model selection framework (in theory and implementation) currently available. The effectiveness of the COSMOS framework is demonstrated by successfully applying it to four benchmark problems (with 2–30 variables) and an airfoil design problem. The optimal model selection results illustrate how diverse models provide important tradeoffs for different problems.

Copyright © 2014 by ASME
Topics: Universe



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In