0

Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Disciplinary Design Optimization for Large-Scale Reverse Osmosis Systems

[+] Author Affiliations
Bo Yang Yu, Tomonori Honda, Maria C. Yang

Massachusetts Institute of Technology, Cambridge, MA

Syed Zubair, Mostafa H. Sharqawy

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Paper No. DETC2014-35032, pp. V02AT03A024; 9 pages
doi:10.1115/DETC2014-35032
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 40th Design Automation Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4631-5
  • Copyright © 2014 by ASME

abstract

Large-scale desalination plants are complex systems with many inter-disciplinary interactions and different levels of sub-system hierarchy. Advanced complex systems design tools have been shown to have a positive impact on design in aerospace and automotive, but have generally not been used in the design of water systems. This work presents a multi-disciplinary design optimization approach to desalination system design to minimize the total water production cost of a 30,000m3/day capacity reverse osmosis plant situated in the Middle East, with a focus on comparing monolithic with distributed optimization architectures. A hierarchical multi-disciplinary model is constructed to capture the entire system’s functional components and subsystem interactions. Three different multi-disciplinary design optimization (MDO) architectures are then compared to find the optimal plant design that minimizes total water cost. The architectures include the monolithic architecture multidisciplinary feasible (MDF), individual disciplinary feasible (IDF) and the distributed architecture analytical target cascading (ATC). The results demonstrate that an MDF architecture was the most efficient for finding the optimal design, while a distributed MDO approach such as analytical target cascading is also a suitable approach for optimal design of desalination plants, but optimization performance may depend on initial conditions.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In