0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Information Gathering Decisions in Systems Engineering Projects

[+] Author Affiliations
Chuck Hsiao, Richard Malak

Texas A&M University, College Station, TX

Paper No. DETC2014-34854, pp. V01BT02A023; 12 pages
doi:10.1115/DETC2014-34854
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1B: 34th Computers and Information in Engineering Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4629-2
  • Copyright © 2014 by ASME

abstract

Decisions in systems engineering projects commonly are made under significant amounts of uncertainty. This uncertainty can exist in many areas such as the performance of subsystems, interactions between subsystems, or project resource requirements such as budget or personnel. System engineers often can choose to gather information that reduces uncertainty, which allows for potentially better decisions, but at the cost of resources expended in acquiring the information. However, our understanding of how to analyze situations involving gathering information is limited, and thus heuristics, intuition, or deadlines are often used to judge the amount of information gathering needed in a decision. System engineers would benefit from a better understanding of how to determine the amount of information gathering needed to support a decision.

This paper introduces Partially Observable Markov Decision Processes (POMDPs) as a formalism for modeling information-gathering decisions in systems engineering. A POMDP can model different states, alternatives, outcomes, and probabilities of outcomes to represent a decision maker’s beliefs about his situation. It also can represent sequential decisions in a compact format, avoiding the combinatorial explosion of decision trees and similar representations. The solution of a POMDP, in the form of value functions, prescribes the best course of action based on a decision maker’s beliefs about his situation. The value functions also determine if more information gathering is needed. Sophisticated computational solvers for POMDPs have been developed in recent years, allowing for a straightforward analysis of different alternatives, and determining the optimal course of action in a given situation. This paper demonstrates using a POMDP to model a systems engineering problem, and compares this approach with other approaches that account for information gathering in decision making.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In