0

Analysis of Interfacial Cracks in a TBC/Superalloy System Under Thermo-Mechanical Loading PUBLIC ACCESS

[+] Author Affiliations
S. Q. Nusier, G. M. Newaz

Wayne State University, Detroit, MI

Paper No. 97-GT-391, pp. V004T14A054; 12 pages
doi:10.1115/97-GT-391
From:
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME

abstract

In thermal barrier coatings (TBC) residual stresses develop during cool down from processing temperature due to the thermal expansion mismatch between the different layers (substrate, bond coat, and TBC). These residual stresses can initiate micro cracks at the bond coat/TBC interface and can lead to debonding at the bond coat/TBC interface. The effect of voids or crack like flaws at the interface can be responsible for initiating debonding and accelerate the oxidation process. Effect of oxide layer growth between bond coat and ceramic layer (TBC) can be modeled as volume increase. In this work we represent this change in volume as an induced pressure across the interface. Mixed-mode fracture analysis of a thin circular delamination in an-axisymmetrically multi layer circular plate is developed. Geometrical nonlinearity is included in the analysis, since we have a large deflection case. The elastic deformation problem of a circular plate subjected to a clamped boundary condition at the edge of the delamination, an out of plane pressure load, and a compressive stress due to thermal mismatch between different layers, was solved numerically using a Rayleigh-Ritz method. The strain energy release rate was evaluated by means of the path-independent M-integral. The numerical results of this problem based on the energy method were verified using finite element method. Both methods correlate well in predicting the energy release rate for Mode I and Mode II, deflection, and postbuckling solutions. The energy release rates G, for both Mode I and Mode II using virtual crack extension method were evaluated. The specimen was cooled down from processing temperature of 1000 °C to 0 °C. The variation of the properties as a function of temperature was used for analysis. It was found that the use of temperature dependent properties in contrast to constant properties provides significantly different values of J-integral and G.

Copyright © 1997 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In