Time Dependent Crack Initiation and Growth in Ceramic Matrix Composites PUBLIC ACCESS

[+] Author Affiliations
Matthew R. Begley

Harvard University, Cambridge, MA

Brian N. Cox

Rockwell International, Thousand Oaks, CA

Robert M. McMeeking

University of California, Santa Barbara, Santa Barbara, CA

Paper No. 97-GT-275, pp. V004T14A051; 11 pages
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME


Matrix cracking in ceramic matrix composites with fine grained fibers at high temperatures will be governed by fiber creep, as relaxation of the fibers eliminates crack tip shielding. Using a time dependent bridging law which describes the effect of creeping fibers bridging a crack in an elastic matrix, crack growth initiation and history have been modeled. For a stationary crack, crack tip stress intensity factors as a function of time are presented to predict incubation times before subcritical crack growth. Two crack growth studies are reviewed: a constant velocity approximation for small-scale bridging, and a complete velocity history analysis which can be used to predict crack length as a function of time. The predictions are summarized and discussed in terms of identifying various regimes of crack growth initiation, subcritical growth, and catastrophic matrix cracking.

Copyright © 1997 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In