0

A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery FREE

[+] Author Affiliations
Peter D. Silkowski, Kenneth C. Hall

Duke University, Durham, NC

Paper No. 97-GT-186, pp. V004T14A033; 15 pages
doi:10.1115/97-GT-186
From:
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME

abstract

A computational method is presented for predicting the unsteady aerodynamic response of a vibrating blade row which is part of a multistage turbomachine. Most current unsteady aerodynamic theories model a single blade row isolated in an infinitely long duct. This assumption neglects the potentially important influence of neighboring blade rows. The present ‘coupled mode’ analysis is an elegant and computationally efficient method for modelling neighboring blade row effects. Using this approach, the coupling between blade rows is modelled using a subset of the so-called spinning modes, i.e. pressure, vorticity, and entropy waves which propagate between the blade rows. The blade rows themselves are represented by reflection and transmission coefficients. These coefficients describe how spinning modes interact with, and are scattered by, a given blade row. The coefficients can be calculated using any standard isolated blade row model; here we use a linearized full potential flow model together with rapid distortion theory to account for incident vortical gusts. The isolated blade row reflection and transmission coefficients, inter-row coupling relationships, and appropriate boundary conditions are all assembled into a small sparse linear system of equations which describes the unsteady multistage flow. A number of numerical examples are presented to validate the method and to demonstrate the profound influence of neighboring blade rows on the aerodynamic damping of a cascade of vibrating airfoils.

Copyright © 1997 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In