A Numerical Approach to Unstalled and Stalled Flutter Phenomena in Turbomachinery Cascades PUBLIC ACCESS

[+] Author Affiliations
Stefan Weber, Hannes Benetschik, Dieter Peitsch, Heinz E. Gallus

Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany

Paper No. 97-GT-102, pp. V004T14A018; 11 pages
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME


During the design process of compressor and turbine blades the investigation of flutter phenomena becomes increasingly important since higher load and better efficiency are desired. As an improvement on the numerical analysis and prediction of unsteady flow through turbomachine cascades with vibrating blades a time accurate Navier Stokes code for S1-stream surfaces SAFES1 is presented within the scope of this paper. To validate the code, numerical results for sub- and transonic test cases of a turbine and a compressor cascade are compared with experimental data. Their good agreement and comparison with Euler calculations show the necessity to take into account viscous effects. To cope with shock waves and areas of separation in laminar or turbulent flow, the fully non linearized Navier Stokes equations are solved using an algebraic turbulence model by Baldwin and Lomax. An approximative upwind flux difference splitting scheme suggested by Roe is implemented. Third order spatial accuracy can be achieved by the MUSCL technique in conjunction with a TVD scheme and a flux limiter by van Albada. By applying either an explicit or an implicit scheme the algorithm can give second order temporal accuracy. The implicit scheme exactly describes the time dependent solution by following a Newton subiteration for every time step.

The blades are discretized in a single passage by a C- or O-type grid. The harmonic motion of the blades is bending or torsion or both simultaneously in a non-rotating or rotating frame of reference. For the chosen mode of oscillation the time dependent axial and circumferential blade forces are determined as well as the resulting moment and damping coefficient. To handle a phaseshift between the motion of the blades a direct store method is used. For the unsteady grid movement a fast grid generation is performed in the core region.

Copyright © 1997 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In