0

Oxidation Behavior of Ceramics for Gas Turbines in Combustion Gas Flow at 1500°C PUBLIC ACCESS

[+] Author Affiliations
Y. Etori, T. Hisamatsu, I. Yuri

Central Research Institute of Electric Power Industry, Yokosuka, Japan

Y. Yasutomi, K. Wada

Hitachi, Ltd., Hitachi, Japan

T. Machida

Hitachi, Ltd., Tsuchiura, Japan

Paper No. 97-GT-355, pp. V004T13A015; 6 pages
doi:10.1115/97-GT-355
From:
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME

abstract

In order to evaluate the durability of silicon-carbides (SiC) and silicon-nitrides (Si3N4), we studied the oxidation behavior of SiC and Si3N4 in 1500°C combustion gas flow. We found that the exposure to the combustion gas flow resulted in the weight losses of those ceramics due to the partial disappearance of the oxidized surface layer.

We investigated the effects of sintering aids and high speed gas flow as possible factors for the disappearance of the oxide layer. Two kinds of SiC, without sintering aids and sintered with B4C, were used as test specimens. After the exposure to combustion gas flow conditions of 1500°C, 150m/s, 0.18MPa, the weight loss rate and thickness of the oxide layer were quite the same for each specimen of SiC. The existence of sintering aids did not have any effect on the disappearance of the oxide layer. To investigate the effect of gas flow, we set each specimen in a tube made of SiC to protect it from the gas flow. The tube had two holes each acting both as inlet and exhaust vents. Consequently, the oxide layer formed thickly. But at the spots on the specimen facing the holes, the oxide layer was thin. Hollows occurred on the specimen of SiC at these spots. It seems that the existence of gas flow is a very important factor in the disappearance of the oxide layer.

Alumina (Al2O3) and zirconia (ZrO2) as oxide ceramics were exposed to the combustion gas flow. The weight of these also decreased. There is a possibility that the weight loss of ceramics in combustion gas flow is caused by degradation of oxide layer on their surface from erosion and hot corrosion due to some oxide scales coming from the test equipment.

Copyright © 1997 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In