0

Reliability of a Conceptual Ceramic Gas Turbine Component Subjected to Static and Transient Thermomechanical Loading PUBLIC ACCESS

[+] Author Affiliations
Paul S. DiMascio, Robert M. Orenstein

GE Power Systems, Schenectady, NY

Harindra Rajiyah

GE Corporate R&D, Schenectady, NY

Paper No. 97-GT-284, pp. V004T13A006; 10 pages
doi:10.1115/97-GT-284
From:
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME

abstract

A three year program to evaluate the feasibility of using monolithic silicon nitride ceramic components in gas turbines was conducted. The use of ceramic materials may enable design of turbine components which operate at higher gas temperatures and/or require less cooling air than their metal counterparts. The feasibility evaluation consisted of three tasks: 1) Expand the material properties database for candidate silicon nitride materials, 2) Demonstrate the ability to predict ceramic reliability and life using a conceptual component model and 3) Evaluate the effect of proof testing on conceptual component reliability. The overall feasibility goal was to determine whether established life and reliability targets could be satisfied for the conceptual ceramic component having properties of an available material. Fast and delayed fracture reliability models were developed and validated via thermal shock and tensile experiments. A creep model was developed using tensile creep data. The effect of oxidation was empirically evaluated using four-point flexure samples exposed to flowing natural gas combustion products. The reliability- and life-limiting failure mechanisms were characterized in terms of temperature, stress and probability of component failure. Conservative limits for design of silicon nitride gas turbine components were established.

Copyright © 1997 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In