Testing of a Full Scale, Low Emissions, Ceramic Gas Turbine Combustor PUBLIC ACCESS

[+] Author Affiliations
K. Smith, A. Fahme

Solar Turbines Incorporated, San Diego, CA

Paper No. 97-GT-156, pp. V004T13A004; 7 pages
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7871-2
  • Copyright © 1997 by ASME


The design and development testing of a full scale, low emissions, ceramic combustor for a 5500 HP industrial gas turbine are described. The combustor was developed under a joint program conducted by the U.S. DOE and Solar Turbines.

The ceramic combustor is designed to replace the production Centaur 50S SoLoNOx burner which uses lean-premixed combustion to limit NOx and CO to 25 and 50 ppm, respectively. Both the ceramic and production combustors are annular in shape and employ twelve premixing, natural gas fuel injectors. The ceramic combustor design effort involved the integration of two CFCC cylinders (76.2 cm [30 in.] and 35.56 cm [14 in.] diameters) into the combustor primary zone.

The ceramic combustor was evaluated at Solar in full scale test rigs and a test engine. Performance of the combustor was excellent with high combustion efficiency and extremely low NOx and CO emissions. The hot walls of the ceramic combustor played a significant role in reducing CO emissions. This suggests that liner cooling air injected through the metal production liner contributes to CO emissions by reaction quenching at the liner walls. It appears that ceramics can serve to improve combustion efficiency near the combustor lean limit which, in turn, would allow further reductions in NOx emissions.

Approximately 50 hours of operation have been accumulated using the ceramic combustor. No significant deterioration in the CFCC liners has been observed. A 4000 hour field test of the combustion system is planned to begin in 1997 as a durability assessment.

Copyright © 1997 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In