0

Parametric Study of Fuel Cell and Gas Turbine Combined Cycle Performance FREE

[+] Author Affiliations
Dawn Stephenson, Ian Ritchey

Rolls-Royce Industrial Power Group, Newcastle upon Tyne, UK

Paper No. 97-GT-340, pp. V002T08A009; 10 pages
doi:10.1115/97-GT-340
From:
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7869-9
  • Copyright © 1997 by ASME

abstract

A number of cycles have been proposed in which a solid oxide fuel cell is used as the topping cycle to a gas turbine, including those recently described by Beve et al. (1996). Such proposals frequently focus on the combination of particular gas turbines with particular fuel cells. In this paper, the development of more general models for a number of alternative cycles is described. These models incorporate variations of component performance with key cycle parameters such as gas turbine pressure ratio, fuel cell operating temperature and air flow. Parametric studies are conducted using these models to produce performance maps, giving overall cycle performance in terms of both gas turbine and fuel cell design point operating conditions. The location of potential gas turbine and fuel cell combinations on these maps is then used to identify which of these combinations are most likely to be appropriate for optimum efficiency and power output. It is well known, for example, that the design point of a gas turbine optimised for simple cycle performance is not generally optimal for combined cycle gas turbine performance. The same phenomenon may be observed in combined fuel cell and gas turbine cycles, where both the fuel cell and the gas turbine are likely to differ from those which would be selected for peak simple cycle efficiency. The implications of this for practical fuel cell and gas turbine combined cycles and for development targets for solid oxide fuel cells are discussed. Finally, a brief comparison of the economics of simple cycle fuel cells, simple cycle gas turbines and fuel cell and gas turbine combined cycles is presented, illustrating the benefits which could result.

Copyright © 1997 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In