Thermodynamic Analysis of Closed Loop Cooled Cycles PUBLIC ACCESS

[+] Author Affiliations
Darren T. Watson, Ian Ritchey

Rolls-Royce Industrial Power Group, Newcastle upon Tyne, UK

Paper No. 97-GT-288, pp. V002T08A007; 14 pages
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7869-9
  • Copyright © 1997 by ASME


Closed loop steam cooling schemes have been proposed by a number of manufacturers for advanced Combined Cycle Gas Turbine (CCGT) power plant (see for example Corman (1996) and Briesch et al. (1994)) asserting that thermal efficiencies in excess of 60% (LHV) are achievable combined with significant improvements of ∼15% in specific power (see Corman (1995)). In understanding the efficiency advantage however, the relative performance of each cooling system (subject to the same practical constraints and technology levels) is a better indicator then the absolute value.

Assessment of the performance of such novel schemes generally involves a detailed numerical analysis of an integrated cycle which may often prevent validation of the results or obscure an understanding of the physical basis for the claimed improvements. Here, to overcome this, a group of simplified expressions are defined for the variation of each cycles efficiency due to cooling which show where the differences come from. These expressions are based simply on a calculation of the marginal increase in heat rejected, to the environment from the cycle, due to an increase in the level of cooling. After these relationships are validated using detailed heat balance calculations they are used to compare the main cooling options, namely open loop air, closed loop air and closed loop steam when subject to the same practical constraints and assumptions. Based on these results it is proposed that the relative advantage of closed loop cooling may not be as significant as previously thought. Furthermore, it is shown that the closed loop cooling efficiency gain is heavily dependent on the performance and reliability of substantial Thermal Barrier Coatings (TBCs).

Finally, although the majority of recent interest in closed loop cooling schemes has focused upon CCGT plant, there are other systems where the benefits of closed loop steam cooling appear to be greater, in particular cycles involving steam injected gas turbines. Such a cycle is analysed here with a number of advanced cooling options.

Copyright © 1997 by ASME
Topics: Cycles
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In