Results of Experiments and Models for Predicting Stability Limits of Turbulent Swirling Flames FREE

[+] Author Affiliations
S. Hoffmann

Siemens-KWU, Mülheim, F.R. Germany

B. Lenze

Universität Karlsruhe, Karlsruhe, F.R. Germany

H. Eickhoff

DLR, Cologne, F.R. Germany

Paper No. 97-GT-396, pp. V002T06A055; 17 pages
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7869-9
  • Copyright © 1997 by ASME


Swirling flames are used in many industrial applications like process furnaces, boilers and gas turbines due to their excellent mixing, stability, emission and burnout characteristics. The wide-spread use of swirl burners in the process and energy industries and, in particular, new concepts for the reduction of NOx-emissions raise the need for simple-to-use models for predicting lean stability limits of highly turbulent flames stabilized by internal recirculation.

Based on recently published experimental data of the first author concerning the reaction structures of swirling flames operating near the extinction limit, different methods for predicting lean blow-off limits have been developed and tested. The aim of the investigations was to find stabilization criteria that allow predictions of blow-off limits of highly turbulent recirculating flames without the requirement for measurements in those flames.

Several similarity criteria based on volumetric flow rates, burner size and material parameters of the cold gases, were found to be capable of predicting stability limits of premixed and (in some cases) nonpremixed flames at varying swirl intensities, burner scales and fuel compositions. A previously developed numerical field model, combining a k,ϵ-model with a combined “assumed-shape Joint-PDF”/Eddy-Dissipation reaction model was also tested for its potential for stability prediction.

Copyright © 1997 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In