0

Development of a Hydrogen-Fueled Combustion Turbine Cycle for Power Generation FREE

[+] Author Affiliations
Ronald L. Bannister

Westinghouse Electric Corporation, Orlando, FL

Richard A. Newby, Wen-Ching Yang

Westinghouse Electric Corporation, Pittsburgh, PA

Paper No. 97-GT-014, pp. V002T05A003; 9 pages
doi:10.1115/97-GT-014
From:
  • ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Orlando, Florida, USA, June 2–5, 1997
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7869-9
  • Copyright © 1997 by ASME

abstract

Consideration of a hydrogen based economy is attractive because it allows energy to be transported and stored at high densities and then transformed into useful work in pollution-free turbine or fuel cell conversion systems. Through its New Energy and Industrial Technology Development Organization (NEDO) the Japanese government is sponsoring the World Energy Network (WE-NET) Program. The program is a 28-year global effort to define and implement technologies needed for a hydrogen-based energy system. A critical part of this effort is the development of a hydrogen-fueled combustion turbine system to efficiently convert the chemical energy stored in hydrogen to electricity when the hydrogen is combusted with pure oxygen. The full-scale demonstration will be a greenfield power plant located sea-side. Hydrogen will be delivered to the site as a cryogenic liquid, and its cryogenic energy will be used to power an air liquefaction unit to produce pure oxygen.

To meet the NEDO plant thermal cycle requirement of a minimum of 70.9%, low heating value (LHV), a variety of possible cycle configurations and working fluids have been investigated. This paper reports on the selection of the best cycle (a Rankine cycle), and the two levels of technology needed to support a near-term plant and a long-term plant. The combustion of pure hydrogen with pure hydrogen with pure oxygen results only in steam, thereby allowing for a direct-fired Rankine steam cycle. A near-term plant would require only moderate development to support the design of an advanced high pressure steam turbine and an advanced intermediate pressure steam turbine.

Copyright © 1997 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In