0

Fault Detection and Isolation Based on Dynamic Observers Applied to Gas Turbine Control Sensors FREE

[+] Author Affiliations
S. Simani, P. R. Spina, S. Beghelli, R. Bettocchi, C. Fantuzzi

Università di Ferrara, Ferrara, Italy

Paper No. 98-GT-158, pp. V005T15A014; 11 pages
doi:10.1115/98-GT-158
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7866-8
  • Copyright © 1998 by ASME

abstract

In order to prevent machine malfunctions and to determine the machine operating state, it is necessary to use correct measurements from actual system inputs and outputs. This requires the use of techniques for the detection and isolation of sensor faults.

In this paper an approach based on analytical redundancy which uses dynamic observers is suggested to solve the sensor fault detection and isolation problem for a single-shaft industrial gas turbine. The proposed technique requires the generation of classical residual functions obtained with different observer configurations. The diagnosis is performed by checking fluctuations of these residuals caused by faults.

Copyright © 1998 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In