0

Prediction of Resonant Response of Shrouded Blades With 3D Shroud Constraint FREE

[+] Author Affiliations
B. D. Yang, J. J. Chen, C. H. Menq

The Ohio State University, Columbus, OH

Paper No. 98-GT-485, pp. V005T14A042; 8 pages
doi:10.1115/98-GT-485
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7866-8
  • Copyright © 1998 by ASME

abstract

In this paper, the 3D shroud contact kinematics of a shrouded blade system is studied. The assumed blade motion has three components, namely axial, tangential, and radial components, which result in a three dimensional relative motion across the shroud interface. The resulting relative motion can be decomposed into two components. The first one is on the contact plane and can induce stick-slip friction. The other component is perpendicular to the contact plane and can cause variation of the contact normal load and, in extreme circumstances, separation of the two contacting surfaces. In order to estimate the equivalent stiffness and damping of the shroud contact an approach is proposed. In this approach, the in-plane slip motion is assumed to be elliptical and is decomposed into two linear motions along the principal major and minor axes of the ellipse. A variable normal load friction force model (Yang and Menq, 1996) is then applied separately to each individual linear motion, and the equivalent stiffness and damping of the shroud contact can be approximately estimated. With the estimated stiffness and damping, the developed shroud contact model is applied to the prediction of the resonant response of a shrouded blade system. The effects of two different shroud constraint conditions, namely 2D constraint and 3D constraint, on the resonant response of a shrouded blade system are compared and the results are discussed.

Copyright © 1998 by ASME
Topics: Resonance , Blades
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In