0

Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilising PPM Levels of the Highly Reactive Elements Lanthanum and Yttrium FREE

[+] Author Affiliations
David A. Ford, Keith P. L. Fullagar, Harry K. Bhangu

Rolls-Royce plc, Derby and Bristol, UK

Malcolm C. Thomas, Phil S. Burkholder, Paul S. Korinko

Allison Engine Company, Rolls-Royce plc, Indianapolis, IN

Ken Harris, Jacqueline B. Wahl

Cannon-Muskegon Corporation, SPS Technologies, Inc., Muskegon, MI

Paper No. 98-GT-371, pp. V005T12A002; 8 pages
doi:10.1115/98-GT-371
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7866-8
  • Copyright © 1998 by ASME

abstract

Turbine inlet temperatures have now approached 1650°C (3000°F) at maximum power for the latest large commercial turbofan engines, resulting in high fuel efficiency and thrust levels approaching or exceeding 445 kN (100,000 lbs.). High reliability and durability must be intrinsically designed into these turbine engines to meet operating economic targets and ETOPS certification requirements.

This level of performance has been brought about by a combination of advances in air cooling for turbine blades and vanes, computerized design technology for stresses and airflow and the development and application of rhenium (Re) containing, high γ′ volume fraction nickel-base single crystal superalloys, with advanced coatings, including prime-reliant ceramic thermal barrier coatings (TBCs). Re additions to cast airfoil superalloys not only improve creep and thermo-mechanical fatigue strength but also environmental properties, including coating performance. Re slows down diffusion in these alloys at high operating temperatures.(1)

At high gas temperatures, several issues are critical to turbine engine performance retention, blade life and integrity. These are tip oxidation in particular for shroudless blades, internal oxidation for lightly cooled turbine blades and TBC adherence to both the airfoil and tip seal liner. It is now known that sulfur (S) at levels < 10 ppm but > 0.2 ppm in these alloys reduces the adherence of α alumina protective scales on these materials or their coatings by weakening the Van der Waal’s bond between the scale and the alloy substrate. A team approach has been used to develop an improvement to CMSX-4® alloy which contains 3% Re, by reducing S and phosphorus (P) levels in the alloy to < 2 ppm, combined with residual additions of lanthanum (La) + yttrium (Y) in the range 10–30 ppm. Results from cyclic, burner rig dynamic oxidation testing at 1093°C (2000°F) show thirteen times the number of cycles to initial alumina scale spallation for CMSX-4 [La + Y] compared to standard CMSX-4.

A key factor for application acceptance is of course manufacturing cost. The development of improved low reactivity prime coats for the blade shell molds along with a viable, tight dimensional control yttrium oxide core body are discussed. The target is to attain grain yields of single crystal CMSX-4 (ULS) [La + Y] turbine blades and casting cleanliness approaching standard CMSX-4. The low residual levels of La + Y along with a sophisticated homogenisation/solutioning heat treatment procedure result in full solutioning with essentially no residual γ/γ′ eutectic phase, Ni (La, Y) low melting point eutectics and associated incipient melting pores. Thus, full CMSX-4 mechanical properties are attained. The La assists with ppm chemistry control of the Y throughout the single crystal turbine blade castings through the formation of a continuous lanthanum oxide film between the molten and solidifying alloy and the ceramic core and prime coat of the shell mold. Y and La tie up the < 2 ppm but > 0.2 ppm residual S in the alloy as very stable Y and La sulfides and oxysulfides, thus preventing diffusion of the S atoms to the alumina scale layer under high temperature, cyclic oxidising conditions. La also forms a stable phosphide.

CMSX-4 (ULS) [La + Y] HP shroudless turbine blades will commence engine testing in May 1998.

Copyright © 1998 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In