0

Dry Low Emissions Premixer CCD Modeling and Validation FREE

[+] Author Affiliations
Harjit S. Hura, Narendra D. Joshi, Hukam C. Mongia

General Electric Aircraft Engines, Cincinnati, OH

Jon Tonouchi

ACRi, Cincinnati, OH

Paper No. 98-GT-444, pp. V003T06A040; 9 pages
doi:10.1115/98-GT-444
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7864-4
  • Copyright © 1998 by ASME

abstract

Computational Combustion Dynamics has been used extensively at General Electric Company for combustion applications. This paper demonstrates an application of Advanced Combustion Code to GE’s lean premixed dry low NOx emissions LM2500 and LM6000 gas turbine combustors. A methodology for anchoring the Double Annular Counter-Rotating Swirler (DACRS) exit conditions to Laser Doppler Velocity data from a reacting single cup experiment is described. The DACRS exit velocity profiles and turbulence parameters are inlet boundary conditions for the annular combustor simulation. Since over 80 per cent of the total air enters the combustor via the premixers, inaccuracies in these boundary conditions have a significant impact on the predicted flame shape, liner temperatures and emissions.

The paper shows comparisons between measured and predicted velocity in a rectangular duct equipped with a single DACRS. The k-ε turbulence model and the two-step eddy break up/eddy dissipation combustion models are used to predict the reacting flow field of the natural gas/air flame. The inlet velocity profiles are developed first to match the LV data and the observed flame impingement location at nominal settings of the inlet turbulence parameters. The sum square error between measured and predicted velocity is used as the optimization function. Next, a design of experiment computational study is conducted to determine the inlet turbulence length scale and kinetic energy in order to further improve the data match. The eddy break up model is shown to be more robust than the eddy dissipation model. The eddy dissipation model resulted in slow combustion rates, and high fuel and carbon monoxide emissions.

Copyright © 1998 by ASME
Topics: Modeling , Emissions
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In