Influence of Turbulence on the Dynamic Behaviour of Premixed Flames PUBLIC ACCESS

[+] Author Affiliations
Uwe Krüger

B&B-AGEMA, Gesellschaft für Energietechnische Maschinen und Anlagen, Aachen, Germany

Stefan Hoffmann, Werner Krebs, Hans Judith

Siemens AG, Mülheim, Germany

Dieter Bohn, Gero Matouschek

Aachen University of Technology, Germany

Paper No. 98-GT-323, pp. V003T06A028; 9 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7864-4
  • Copyright © 1998 by ASME


Environmental compatibility requires low emission burners for gas turbine power plants as well as for jet engines. In the past significant progress has been made developing low NOx and CO burners by introducing lean premixed techniques. Unfortunately these burners often have a more pronounced tendency than conventional burner designs to produce combustion driven oscillations. The oscillations may be excited to such an extent that strong pulsation may possibly occur; this is associated with a risk of engine failure and higher NOx emissions.

In order to describe the acoustical behaviour of the complete burner system the determination of the transfer function of the flame itself is crucial. Using a new method which was presented by Bohn, Deutsch and Krüger (1996) and Bohn, Li, Krüger and Matousckek (1997), the dynamic flame behaviour can be predicted by means of a full Navier-Stokes-simulation of the complex combustion process for the steady-state as well as for the transient situation.

This method has been successfully used by the authors to obtain the frequency response of turbulent diffusion flames and laminar premixed flames. For the application in modern gas turbines the influence of turbulence on the dynamic behaviour of premixed flames is of big interest.

Therefore, this paper presents numerical studies of a turbulent premixed flame configuration for which experimental data is available in the literature. Two different combustion models have been used for the steady-state as well as for the transient calculations. With the improved model, which takes into account the chemical kinetics and the interaction between turbulence and kinetics, good agreement has been found for the steady-state results and for the frequency response of the flame.

Copyright © 1998 by ASME
Topics: Turbulence , Flames
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In