Development of a Low NOx Combustor for 300kW-Class Ceramic Gas Turbine (CGT302) PUBLIC ACCESS

[+] Author Affiliations
A. Okuto, T. Kimura

Akashi Technical Institute

I. Takehara, T. Nakashima, Y. Ichikawa, T. Tatsumi

Kawasaki Heavy Industries, Ltd., Hyogo, Japan

Paper No. 98-GT-272, pp. V003T06A023; 7 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7864-4
  • Copyright © 1998 by ASME


Research and development project of ceramic gas turbines (CGT) was started in 1988 promoted by the Ministry of International Trade and Industry (MITI) in Japan. The target of the CGT project is development of a 300kW-class ceramic gas turbine with a 42 % thermal efficiency and a turbine inlet temperature (TIT) of 1350°C. Three types of CGT engines are developed in this project. One of the CGT engines, which is called CGT302, is a recuperated two-shaft gas turbine for co-generation use. In this paper, we describe the research and development of a combustor for the CGT302.

The project requires a combustor to exhaust lower pollutant emissions than the Japanese regulation level. In order to reduce NOx emissions and achieve high combustion efficiency, lean premixed combustion technology is adopted.

Combustion rig tests were carried out using this combustor. In these tests we measured the combustor performance such as pollutant emissions, combustion efficiency, combustor inlet/outlet temperature, combustor inlet pressure and pressure loss through combustor. Of course air flow rate and fuel flow rate are controlled and measured, respectively.

The targets for the combustor such as NOx emissions and combustion efficiency were accomplished with sufficient margin in these combustion rig tests. In addition, we report the results of the tests which were carried out to examine effects of inlet air pressure on NOx emissions here.

Copyright © 1998 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In