0

Application of a Partially Premixed Laminar Flamelet Model to a Low Emissions Gas Turbine Combustor FREE

[+] Author Affiliations
T. J. Held, H. C. Mongia

GE Aircraft Engines, Cincinnati, OH

Paper No. 98-GT-217, pp. V003T06A010; 6 pages
doi:10.1115/98-GT-217
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7864-4
  • Copyright © 1998 by ASME

abstract

Computational combustion dynamics simulations have been used widely for the design and analysis of conventional rich dome combustors using a fast chemistry assumed shape PDF approach (Shyy et al. 1986) and/or an eddy-breakup model (Valachovic, 1993, Danis et al., 1996). The application of these tools to ultra-low emissions combustors such as the GE LM6000 DLE has been hampered by the inadequacies of the eddy break-up combustion model. In the present work, a partially-premixed laminar flamelet combustion model, based initially on the model of Müller et al. (1994), is applied to an LM6000 single cup combustor. The basic fluid mechanical code is ACC, using the k-ε turbulence model (Prakash, et al., 1998). Assumed-shape PDF models are used for mixture fraction Z(x), and the scalar field G(x), whose level surfaces G = G0 represent the flame location. The model includes the effects of local strain rate on flame propagation rate and extinction through modification of the turbulent flame speed correlation, which determines the rate of propagation of the scalar field variable G. The effects of variable inlet fuel/air ratio variance (unmixedness) on predicted NOx emissions are included through the moments of a calculated NO source term on the PDF’s of Z, and include the contributions of flame-front production of NO in premixed flames. Comparisons to measured velocity and emissions data are shown.

Copyright © 1998 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In