0

Development of Hexaaluminate Catalysts for Combustion of Gasified Biomass in Gas Turbines FREE

[+] Author Affiliations
E. Magnus Johansson, K. M. Jonny Danielsson, Anders G. Ersson, Sven G. Järås

KTH - Royal Institute of Technology, Stockholm, Sweden

Paper No. 98-GT-338, pp. V003T05A025; 5 pages
doi:10.1115/98-GT-338
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7864-4
  • Copyright © 1998 by ASME

abstract

There is an increasing interest in catalytic combustors fuelled by low-heating value (LHV) gases, with a LHV of 5–7 MJ/Nm3. This is because catalytic combustion could be advantageous compared to flame combustion with respect to stable combustion of LHV-gases and low conversions of fuel-N (mainly NH3) to NOx. In the present project, funded by the EU Joule Programme, catalytic combustion of gasified wood for gas turbine applications is studied. A synthetic gas mixture of H2, CO, CO2, H2O, CH4, N2 and NH3, that resembles the output from a fluidized bed gasifier using biomass as raw material, is used. The gas mixture is mixed with air at atmospheric pressure and combusted over washcoated cordierite monoliths in a bench-scale laboratory quartz-reactor.

The objectives of the work described here are twofold. To begin with, improvement of the thermal stability of hexaaluminate washcoats by substitutions of rare earth or transition metal compounds is being studied. Secondly, catalytic combustion of gasified biomass over these washcoats has been studied in a bench-scale unit.

In this on-going project, obtained result show that it is possible to improve the surface area of hexaaluminate compounds up to 17 m2/g after careful synthesis and calcination up to 1400 °C for four hours. The selectivity of NH3-conversion to N2 is at present at 60 percent, but varies strongly with temperature. Fuel components such as H2, CO, C2H4 and NH3 ignite at temperatures close to compressor outlet temperatures. This means that a pilot-flame may not be needed for ignition of the fuel. A comparison between a Pd-impregnated lanthanum hexaaluminate and a Mn-substituted lanthanum hexaaluminate showed that the ignition temperature and the NOx-formation varied strongly over the two different catalysts.

Copyright © 1998 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In