Final Report on the Development of a Hydrogen-Fueled Combustion Turbine Cycle for Power Generation FREE

[+] Author Affiliations
Ronald L. Bannister

Westinghouse Power Generation, Orlando, FL

Richard A. Newby, Wen-Ching Yang

Westinghouse Power Generation Science & Technology Center, Pittsburgh, PA

Paper No. 98-GT-021, pp. V003T05A001; 9 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7864-4
  • Copyright © 1998 by ASME


Through its New Energy and Industrial Technology Development Organization (NEDO) the Japanese government is sponsoring the World Energy Network (WE-NET) Program. WE-NET is a 28-year global effort to define and implement technologies needed for hydrogen-based energy systems. A critical part of this effort is the development of a hydrogen-fueled combustion turbine system to efficiently convert the chemical energy stored in hydrogen to electricity when hydrogen is combusted with pure oxygen.

A Rankine cycle, with reheat and recuperation, was selected by Westinghouse as the general Reference System. Variations of this cycle have been examined to identify a Reference System having maximum development feasibility, while meeting the requirement of a minimum of 70.9% low heating value (LHV) efficiency. The strategy applied by Westinghouse was to assess both a near-term and long-term Reference Plant. The near-term plant requires moderate development based on extrapolation of current steam and combustion turbine technology. In contrast, the long-term plant requires more extensive development for an additional high-pressure reheat turbine, and is more complex than the near-term plant with closed-loop steam cooling and extractive feedwater heating. Trade-offs between efficiency benefits and development challenges of the near-term and long-term reference plant are identified. Results of this study can be applied to guide the future development activities of hydrogen-fueled combustion turbine systems.

Copyright © 1998 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In