The Potential of Sequential Combustion for High Bypass Jet Engines PUBLIC ACCESS

[+] Author Affiliations
Konrad Vogeler

ABB Power Generation Ltd, Baden, Switzerland

Paper No. 98-GT-311, pp. V002T02A006; 10 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7863-7
  • Copyright © 1998 by ASME


ABB has designed a new family of industrial gasturbines for power generation using a Sequential Combustion Cycle (SCC) on a large single shaft engine. This concept allows considerable increase in power density and efficiency by only increasing pressure without raising the maximum hot gas temperature of the cycle. Instead a second combustion after an HP-turbine is used to reheat the gas before the final expansion in an LP-turbine.

This concept is applied to the analysis of a high bypass ratio jet engine. In an engine with a single combustor, thrust is a function of bypass ratio and the combination of maximum pressure and temperature in the cycle. The proposed SCC allows increased thrust without pushing technology on materials and cooling. A modern twin spool engine is taken as reference. When total inlet massflow is kept constant, increasing bypass ratio decreases core mass flow. This limits the fuel flow for the HP-spool and hence total energy input to the engine. Introduction of the SCC gives another parameter of freedom to the cycle design. However the twin spool concept is now a disadvantage. The low fuel flow for the HP-spool due to high bypass ratio means there is not enough energy available to build up the necessary pressure for an economical expansion in the LP-turbine after the second combustion. Specific fuel consumption will be unacceptable.

It is proposed to apply the SCC concept in a single spool engine with a geared fan. Both turbines can now support the compression. The fan is operated as a constant speed propeller with variable blade pitch. This engine concept allows for a given inlet massflow a substantially higher bypass ratio and hence decreases specific fuel consumption while specific thrust can be kept on a level which will be considerably higher than it would be in todays engines with comparable bypass ratio.

Copyright © 1998 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In