Unsteady Wake Effects on Boundary Layer Transition and Heat Transfer Characteristics of a Turbine Blade PUBLIC ACCESS

[+] Author Affiliations
M. T. Schobeiri, P. Chakka, K. Pappu

Texas A&M University, College Station, TX

Paper No. 98-GT-291, pp. V001T01A080; 14 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 1: Turbomachinery
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7862-0
  • Copyright © 1998 by ASME


Effect of unsteady wakes on aerodynamic and heat transfer characteristics of a turbine blade in a cascade were analyzed both experimentally and theoretically. Comprehensive aerodynamic data were collected for different wake passing frequencies that are typical of turbomachinery. Hot-wire probes were used for collection of boundary layer data on suction and pressure surfaces of the turbine blade. Heat transfer measurements were made using steady liquid crystal techniques. Boundary layer data were analyzed through intermittency function to get insight into the transition process under unsteady wake flow conditions. The experimental and theoretical results presented in this paper confirm the general validity of the unsteady boundary layer transition model developed by Chakka and Schobeiri (1997). This model is based on a relative intermittency function, which accounts for the effects of periodic unsteady wake flow on the boundary layer transition. Three distinct quantities are identified as primarily responsible for the transition of an unsteady boundary layer. These quantities, which exhibit the basis of the transition analysis presented in this paper, are: (1) relative intermittency, (2) maximum intermittency, and (3) minimum intermittency. To validate the developed transition model, it is implemented in an existing boundary layer code, and the resulting heat transfer coefficients are compared with the experimental data.

Copyright © 1998 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In