0

Practical Use of 3D Inverse Method for Compressor Blade Design PUBLIC ACCESS

[+] Author Affiliations
S. Damle, T. Dang

Syracuse University

J. Stringham, E. Razinsky

Solar Turbines Inc.

Paper No. 98-GT-115, pp. V001T01A035; 7 pages
doi:10.1115/98-GT-115
From:
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 1: Turbomachinery
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7862-0
  • Copyright © 1998 by ASME

abstract

The practical utility of a 3D inverse viscous method is demonstrated by carrying out a design modification of a first-stage rotor in an industrial compressor. In this design modification study, the goal is to improve the efficiency of the original blade while retaining its overall aerodynamic, structural and manufacturing characteristics. By employing a simple modification to the blade pressure loading distribution (which is the prescribed flow quantity in this inverse method), the modified blade geometry is predicted to perform better than the original design over a wide range of operating points, including an improvement in choke margin.

Copyright © 1998 by ASME
Topics: Compressors , Design , Blades
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In