Physics of Airfoil Clocking in a High-Speed Axial Compressor PUBLIC ACCESS

[+] Author Affiliations
Daniel J. Dorney

GMI Engineering & Management Institute, Flint, MI

Om P. Sharma

Pratt & Whitney, East Hartford, CT

Karen L. Gundy-Burlet

NASA Ames Research Center, Moffett Field, CA

Paper No. 98-GT-082, pp. V001T01A024; 12 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 1: Turbomachinery
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7862-0
  • Copyright © 1998 by ASME


Axial compressors have inherently unsteady flow fields because of relative motion between rotor and stator airfoils. This relative motion leads to viscous and inviscid (potential) interactions between blade rows. As the number of stages increases in a turbomachine, the buildup of convected wakes can lead to progressively more complex wake/wake and wake/airfoil interactions. Variations in the relative circumferential positions of stators or rotors can change these interactions, leading to different unsteady forcing functions on airfoils and different compressor efficiencies. In addition, as the Mach number increases the interaction between blade rows can be intensified due to potential effects. In the current study an unsteady, quasi-three-dimensional Navier-Stokes analysis has been used to investigate the unsteady aerodynamics of stator clocking in a 1-1/2 stage compressor, typical of back stages used in high-pressure compressors of advanced commercial jet engines. The effects of turbulence have been modeled with both algebraic and two-equation models. The results presented include steady and unsteady surface pressures, efficiencies, boundary layer quantities and turbulence quantities.

The main contribution of the current work has been to show that airfoil clocking can produce significant performance variations at the Mach numbers associated with an engine operating environment. In addition, the growth of turbulence has been quantified to aid in the development of models for the multi-stage steady analyses used in design systems.

Copyright © 1998 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In