Vortex Simulation of Rotor/Stator Interaction in Turbomachinery PUBLIC ACCESS

[+] Author Affiliations
Xian Hong Wu, Mao Zhang Chen

Beijing University of Aeronautics & Astronautics, Beijing, P.R.China

Paper No. 98-GT-015, pp. V001T01A006; 8 pages
  • ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 1: Turbomachinery
  • Stockholm, Sweden, June 2–5, 1998
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7862-0
  • Copyright © 1998 by ASME


A new numerical method is presented in this paper to simulate rotor/stator interaction in turbomachinery by use of a vortex method based on a Lagrangian frame. The algorithm takes the result from steady solution as input, which can give an initial description of the unsteady disturbance flow field. To calculate the unsteady response to these disturbances, the Lagrangian vortex method is used to capture the convective process, and the deterministic vortex scheme to approximate the viscous diffusion process. The application of Baldwin-Lomax turbulence model in wakes is developed, so as to overcome the difficulties such as the much higher calculated viscosity in the outer region than that in the boundary regions, and the difficulty in continuously tracing moving wake centerlines encounted by other numerical methods. The agreement between the computational and experimental results is generally good. The sweeping characteristic of wakes, the influence of unsteadiness on incidence and the decaying features of unsteady velocities, pressure are included in the paper.

Copyright © 1998 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In