Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Trees on Micrometeorology in a Medium-Size Mediterranean City: In Situ Experiments and Numerical Simulations

[+] Author Affiliations
Gianluca Pappaccogli, Riccardo Buccolieri, Giuseppe Maggiotto, Gennaro Rispoli, Francesco Micocci, Silvana Di Sabatino

University of Salento, Lecce, Italy

Laura S. Leo

University of Notre Dame, Notre Dame, IN

Paper No. FEDSM2014-21566, pp. V01DT28A005; 9 pages
  • ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow With Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations
  • Chicago, Illinois, USA, August 3–7, 2014
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4624-7
  • Copyright © 2014 by ASME


This study analyses the aerodynamic effects of trees on local meteorological variables through in situ measurements and Computational Fluid Dynamics (CFD) simulations. Measurements are taken in the inner core of a medium-size Mediterranean city (Lecce, IT) where two adjacent street canyons of aspect ratio H/W∼1 (where H is the average building height and W is the average width of the street) with and without trees are investigated. Building façades and ground temperatures are estimated from infrared (IR) images, while flow and turbulence are measured through three ultrasonic anemometers placed at different heights close to a building façade at half length of the canyon. Tree crown porosity is evaluated through the Leaf Area Index (LAI) measured by a ceptometer. Numerical simulations are made using a CFD code equipped with the Reynolds Stress Model (RSM) for the treatment of turbulence. Overall, the analysis of measurements shows that trees considerably reduce the longitudinal wind speed up to 30%. Trees alter the typical diurnal cycle of surface and air temperature within the canyon, suggesting that in nocturnal hours the trapping of heat is more important than the power of passive cooling through evapo-transpiration. Comparative numerical simulations provide further evidence that flow velocity reduces in presence of trees and although the typical wind channeling observed without trees is still maintained, trees enhance the formation of a corner vortex leading to reverse flow at the openings of the street. The reduction of the exchange of momentum between the canyon and the atmosphere above, shown by the measurements in presence of trees is confirmed by numerical simulations.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In