Full Content is available to subscribers

Subscribe/Learn More  >

Application of Valve-Less Impedance Pumps to a Direct Sodium Borohydride–Hydrogen Peroxide Fuel Cell

[+] Author Affiliations
C. Y. Wen

Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

A. S. Yang

National Taipei University of Technology, Taipei, Taiwan

J. W. Tseng

National Cheng Kung University, Tainan, Taiwan

Paper No. FEDSM2014-21836, pp. V01CT24A006; 8 pages
  • ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1C, Symposia: Fundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
  • Chicago, Illinois, USA, August 3–7, 2014
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4623-0
  • Copyright © 2014 by ASME


In this study, two novel valve-less impedance pumps are applied, for the first time, in the liquid fuel supply of a Direct Sodium Borohydride–Hydrogen Peroxide Fuel Cell (DBHPFC). This valve-less pump prevents the pump corrosion and serves appropriately to reduce the volume and weight of fuel cell systems. It comprises an amber latex rubber tube, connected at both ends to rigid stainless steel tubes of different acoustic impedance, and a simple actuation mechanism which combines a small DC motor and a cam. The motor activated cam periodically compresses the elastic tube at a position asymmetric from the tube ends. Traveling waves, emitted from the compression, combine with reflected waves at the impedance-mismatched rubber tube/stainless tube interfaces. The resulting wave interference creates a pressure gradient and generates a net flow. A DBHPFC with the active area of 25 cm2 is constructed. It is shown that the maximum pumping rate can achieve 30 ml/min with the DBHPFC connected. The corresponding maximum power and current are 13.0 W and 25.5 A, respectively. Specific power, volumetric power density, and back work ratio of the DBHPFC using this pumping method are shown superior to those of the other pumping configuration with the peristaltic pumps.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In