0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Pseudo Turbulent Scalar Transport in Two Phase Fluid Flow and Passive Scalar Mixing Using Simultaneous SPIV/PLIF

[+] Author Affiliations
Mahdi Ramezani, Shankar Subramaniam, Michael G. Olsen

Iowa State University, Ames, IA

Paper No. FEDSM2014-22128, pp. V01BT22A008; 9 pages
doi:10.1115/FEDSM2014-22128
From:
  • ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1B, Symposia: Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Flow Manipulation and Active Control: Theory, Experiments and Implementation; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows
  • Chicago, Illinois, USA, August 3–7, 2014
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4622-3
  • Copyright © 2014 by ASME

abstract

The presented work is focused on developing closure models for simulation of multiphase flow using multi-fluid models. In the two-fluid model, pseudo turbulent terms appear in both the heat transfer term in the energy equation and the mass transfer term in the species equation. These terms are often neglected due to lack of information, but recent studies show that they can indeed be significant in the simulation of the inter particle phenomena. In the present work, we experimentally investigate the importance of pseudo turbulent term in passive scalar transport. A simultaneous stereo particle image velocimetry and planar laser induced fluorescence (SPIV/PLIF) measurement of the field data for a liquid-solid flow is presented in this study. The results of this measurement are used to validate data from Particle Resolved DNS (PR-DNS) that in turn is used to develop the aforementioned closure models. In this work, results for a single sphere are presented for Reynolds number ranging from 50 to 150. In addition, results for arrays of spheres representing volume fractions of 0.1 and 0.2 are presented for the same range of Reynolds number.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In