0

Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Flow-Field Comparisons of RANS and LES for a Twisted Pin Lattice Geometry at Low Reynolds Number

[+] Author Affiliations
Adam R. Kraus, Elia Merzari, Paul F. Fischer

Argonne National Laboratory, Lemont, IL

Paper No. FEDSM2014-22166, pp. V01AT03A025; 8 pages
doi:10.1115/FEDSM2014-22166
From:
  • ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1A, Symposia: Advances in Fluids Engineering Education; Turbomachinery Flow Predictions and Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; Droplet-Surface Interactions; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods
  • Chicago, Illinois, USA, August 3–7, 2014
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4621-6
  • Copyright © 2014 by ASME

abstract

The accurate evaluation of fuel and cladding peak temperatures is of prime importance for nuclear reactor design and safety. The Global Threat Reduction Initiative reactor conversion program often encounters exotic flow geometries in its mission to aid in converting reactors from high-enriched to low-enriched fuel. These geometries can pose modeling challenges. Analysis presented here concerns a reactor with twisted fuel pins that are in direct contact with each other in a large, hexagonal-pitch lattice. The Reynolds number for a unit cell is only 7500. Such flow conditions can present difficulties for standard approaches based on Reynolds-Averaged Navier-Stokes (RANS). Moreover there are no available experimental data and a small expected margin to the limiting cladding surface temperature. Given some of the geometric uncertainties, reducing the turbulence model uncertainty is thus important for meaningful calculations. A computational fluid dynamics model of a full-length unit cell was built using the commercial code STAR-CCM+. Multiple RANS models were employed, which gave disparate results. To provide higher-fidelity data for comparison, given the lack of experimental data, a periodic single-helical-pitch simulation with a Large Eddy Simulation (LES) approach was performed using Nek5000, a massively-parallel spectral-element code. This was compared with single-pitch RANS simulations from STAR-CCM+. Stream-wise velocity profile shape was generally well-represented by RANS. Cross-velocities and peak turbulent kinetic energy (TKE) were underestimated for most of the turbulence models with respect to LES, while mean flow TKE was universally underestimated. The overall results suggest that the Realizable k-ε Two-Layer model, which was the best at reproducing the LES TKE distribution, would likely be the most appropriate turbulence model choice for this flow. Future work includes full conjugate heat transfer simulations of 1/6 sectors of fuel assemblies featuring this type of pin lattice.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In