Full Content is available to subscribers

Subscribe/Learn More  >

Reynolds-Averaged Simulation on Turbulent Drag-Reducing Flows of Viscoelastic Fluid Based on User-Defined Function in FLUENT Package

[+] Author Affiliations
Zhi-Ying Zheng, Feng-Chen Li, Qian Li

Harbin Institute of Technology, Harbin, China

Paper No. FEDSM2014-21327, pp. V01AT03A010; 9 pages
  • ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1A, Symposia: Advances in Fluids Engineering Education; Turbomachinery Flow Predictions and Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; Droplet-Surface Interactions; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods
  • Chicago, Illinois, USA, August 3–7, 2014
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4621-6
  • Copyright © 2014 by ASME


A new numerical simulation methodology for turbulent flows of viscoelastic fluid was developed for engineering application purpose based on commercial computational fluid dynamics code FLUENT package. An in-house subroutine was established and embedded into FLUENT code through userdefined function functionalization. In order to benchmark this methodology, numerical simulations on turbulent channel flows of viscoelastic fluid are conducted under different cases with drag reduction rates varied from low level to high level. FENE-P (finitely extensive nonlinear elastic-Peterlin) constitutive model is used to describe the viscoelastic effect of viscoelastic fluid flow. The turbulent model is developed in the framework of Display Formulakεν2¯f model, for which the elliptic relaxation model is modified to account for the Reynolds stress equilibrium established by the presence of elasticity in the fluid. The numerical simulation results, including velocity profiles, turbulent flow characteristics, elastic stress and conformation field, show good agreements with published DNS results, which validates the newly established method on turbulent flows of viscoelastic fluid based on FLUENT software platform for engineering applications.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In