0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of a Non-Circular Gear Infinitely Variable Transmission

[+] Author Affiliations
Kumar Hebbale, Dongxu Li, Chi-Kuan Kao, Farzad Samie, Chunhao Lee, Robert Gonzales

GM R&D, Warren, MI

Jing Zhou

GMPT, Milford, MI

Chengwu Duan

GM China Science Lab, Shanghai, China

Paper No. DSCC2014-6083, pp. V003T49A003; 8 pages
doi:10.1115/DSCC2014-6083
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by General Motors

abstract

Improving automobile fuel efficiency is an important research and development effort in the automotive industry. In the transmission area, it is generally understood that optimum fuel economy can be achieved via a combination of highly efficient power transfer (gears, for example) and an ability to transmit power at an infinite number of ratios (CVT, for example). In this paper, a geared infinitely variable transmission (IVT) is analyzed for efficiency through static analysis. This IVT is based on a non-circular gear concept described in [1, 2]. This IVT consists of multiple function generators with each function generator comprising two sets of non-circular gear sets whose outputs are combined with a summing planetary gear set. Each function generator provides the desired gear ratio for only a part of the driving rotation. So, multiple function generators are combined along with multiple one-way clutches to provide an infinitely variable transmission.

This paper first explains the operating principle of the geared IVT. A static analysis of the IVT powerflow is derived and it is shown that this powerflow exhibits a torque recirculation phenomenon, which is not desired. This recirculation phenomenon is expected to be present in all similarly arranged IVTs where two inputs are combined using a planetary gear set to provide infinite gear ratio capability. The efficiency of the IVT is calculated based on assumed individual component efficiency and it is shown that, owing to torque recirculation, the efficiency of this transmission may not compare well with that of current automatic transmissions for a passenger car application.

Copyright © 2014 by General Motors
Topics: Gears

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In