Full Content is available to subscribers

Subscribe/Learn More  >

Pointwise Angle Minimization: A Method for Guiding Wheeled Robots Based on Constrained Directions

[+] Author Affiliations
Rana Soltani-Zarrin, Amin Zeiaee, Suhada Jayasuriya

Drexel University, Philadelphia, PA

Paper No. DSCC2014-6279, pp. V003T48A004; 8 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by ASME


In this paper we consider the point-to-point steering of a two wheeled differential drive mobile robot subject to constrained control inputs where the robot is expected to follow a given path between initial and final points. Formulation of this steering task as a constrained optimal control problem leads to nonlinear two-point boundary value problems. To avoid dealing with boundary value problems while alleviating the complications in analysis of systems with holonomic/non-holonomic constraints, we tackle the problem from a different perspective. This paper proposes a general framework for guiding wheeled robots using constrained direction method. The proposed scheme is equipped with pointwise angle minimization, a search algorithm useful in devising control strategies for steering problems. In addition to computational efficiency, one of the main advantages of the proposed scheme is that it does not impose any restrictive assumptions on the robot’s model. In this paper, kinematics of the robot under the assumption of rolling without slipping has been used as the model of the system and the efficiency of the proposed navigation scheme is illustrated through simulation results. However, the proposed scheme can be applied to more complicated models representing the two wheeled differential robots such as dynamics under slip occurrence.

Copyright © 2014 by ASME
Topics: Robots



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In