Full Content is available to subscribers

Subscribe/Learn More  >

A Switched-System Approach to Shared Robust Control and Obstacle Avoidance for Mobile Robots

[+] Author Affiliations
Jingfu Jin, Nicholas Gans

University of Texas at Dallas, Richardson, TX

Yoon-Gu Kim, Sung-Gil Wee

Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea

Paper No. DSCC2014-6237, pp. V003T48A003; 10 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by ASME


We propose a shared control structure for nonholonomic mobile robots, in which a human operator can command motions that override autonomous operation, and the robot overrides either the teleoperation or autonomous controller if it encounters an obstacle. We divide the whole configuration, including orientation, space into an obstacle avoidance and an obstacle-free region. This enables a switched-system approach to switch between autonomous and teleoperation mode, or the obstacle avoidance and the obstacle-free region. To reject disturbances or noise present in the error dynamics, two different robust control laws are proposed using a high gain and a variable structure approach. Lyapunov-based stability analysis is provided. To rigorously test the approach under different circumstances, experiments have been conducted by two different research groups. The results from two groups show that the shared control approach works effectively both in the teleoperation mode and autonomous mode with different system settings and environments.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In