0

Full Content is available to subscribers

Subscribe/Learn More  >

Closed-Loop Control of Fluid Resuscitation via Blood Volume Estimation

[+] Author Affiliations
Ramin Bighamian, Jin-Oh Hahn

University of Maryland, College Park, MD

Andrew T. Reisner

Massachusetts General Hospital, Boston, MA

Paper No. DSCC2014-5851, pp. V003T46A001; 7 pages
doi:10.1115/DSCC2014-5851
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by ASME

abstract

This paper presents a model-based approach to the closed-loop control of fluid resuscitation against hypovolemia. In this approach, the control system consists of a model-based blood volume estimator and a feedback controller. The model-based blood volume estimator derives relative changes in the blood volume response to the augmented fluid by analyzing an arterial blood pressure waveform and the electrocardiogram. Then, the feedback controller determines the amount of fluid to be augmented by comparing targeted versus estimated relative changes in the blood volume. In this way, unlike many previous methods for fluid resuscitation based on indirect surrogate(s) of blood volume, fluid resuscitation can be directly guided by the blood volume response. This paper reports initial design of the closed-loop control system and its simulation-based evaluation in a wide range of hypovolemic and physiologic scenarios. The results suggest that the proposed closed-loop control system is very effective in resuscitation against hypovolemia: in 97 out of 100 simulated hypovolemia, the final blood volume achieved by the control system was within 10% of its optimal value.

Copyright © 2014 by ASME
Topics: Fluids , Blood

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In