0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiagent Coordination Optimization Based Model Predictive Control Strategy With Application to Balanced Resource Allocation

[+] Author Affiliations
Haopeng Zhang, Qing Hui

Texas Tech University, Lubbock, TX

Paper No. DSCC2014-5954, pp. V003T40A002; 10 pages
doi:10.1115/DSCC2014-5954
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by ASME

abstract

Model predictive control (MPC) is a heuristic control strategy to find a consequence of best controllers during each finite-horizon regarding to certain performance functions of a dynamic system. MPC involves two main operations: estimation and optimization. Due to high complexity of the performance functions, such as, nonlinear, non-convex, large-scale objective functions, the optimization algorithms for MPC must be capable of handling those problems with both computational efficiency and accuracy. Multiagent coordination optimization (MCO) is a recently developed heuristic algorithm by embedding multiagent coordination into swarm intelligence to accelerate the searching process for the optimal solution in the particle swarm optimization (PSO) algorithm. With only some elementary operations, the MCO algorithm can obtain the best solution extremely fast, which is especially necessary to solve the online optimization problems in MPC. Therefore, in this paper, we propose an MCO based MPC strategy to enhance the performance of the MPC controllers when addressing non-convex large-scale nonlinear problems. Moreover, as an application, the network resource balanced allocation problem is numerically illustrated by the MCO based MPC strategy.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In