Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Moving Horizon Observer for Estimation of States and Parameters in Under-Balanced Drilling Operations

[+] Author Affiliations
Amirhossein Nikoofard, Tor Arne Johansen, Glenn-Ole Kaasa

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. DSCC2014-6074, pp. V003T37A002; 9 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by ASME


It is not possible to directly measure the total mass of gas and liquid in the annulus and geological properties of the reservoir during petroleum exploration and production drilling. Therefore, these parameters and states must be estimated by online estimators with proper measurements. This paper describes a nonlinear Moving Horizon Observer to estimate the annular mass of gas and liquid, and production constants of gas and liquid from the reservoir into the well during Under-Balanced Drilling with measuring the choke pressure and the bottom-hole pressure. This observer algorithm based on a low-order lumped model is evaluated against Joint Unscented Kalman filter for two different simulations with low and high measurement noise covariance. The results show that both algorithms are capable of identifying the production constants of gas and liquid from the reservoir into the well, while the nonlinear Moving Horizon Observer achieves better performance than the Unscented Kalman filter.

Copyright © 2014 by ASME
Topics: Drilling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In