0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Modeling of Bottomhole Assembly

[+] Author Affiliations
Madhu Vadali, Zhijie Sun, Yuzhen Xue, Jason Dykstra

Halliburton, Houston, TX

Paper No. DSCC2014-5927, pp. V003T37A001; 8 pages
doi:10.1115/DSCC2014-5927
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 3: Industrial Applications; Modeling for Oil and Gas, Control and Validation, Estimation, and Control of Automotive Systems; Multi-Agent and Networked Systems; Control System Design; Physical Human-Robot Interaction; Rehabilitation Robotics; Sensing and Actuation for Control; Biomedical Systems; Time Delay Systems and Stability; Unmanned Ground and Surface Robotics; Vehicle Motion Controls; Vibration Analysis and Isolation; Vibration and Control for Energy Harvesting; Wind Energy
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4620-9
  • Copyright © 2014 by ASME

abstract

This paper presents a comprehensive 4D dynamic model of a bottomhole assembly (BHA) used for directional drilling of oil and gas wells. Although directional drilling has been in practice for some time, it still poses several challenges, particularly related to building an autonomous drilling system. The difficulty with drilling automation derives from the complexity of the process that includes interaction with the borehole and fluid (mud) flow and complex downhole vibrations, such as bit-bounce (axial), whirl (lateral), and stick/slip (torsional). Moreover, the measurements from a limited number of downhole sensors are usually contaminated with high noise levels, and can only be transmitted at low rates with long transmission delays using mud pulsing, or at a high cost using wired pipe. Therefore, it is preferable that the directional drilling system work autonomously with limited communication to the surface. To facilitate this, a compressive physics-based model of the BHA behavior was created to be used in control system development.

In this work, the 4D dynamic model of the BHA accounts for the dynamics in rotation, axial motion, and bending along two lateral directions. The model uses a lumped mass-spring system and the system parameters (mass and stiffness) are derived from the shear beam theory of a flexible beam under certain boundary conditions.

Simulation results of the model were successful in qualitatively replicating the three types of downhole vibrations, namely bit-bounce, whirl, and stick/slip, and are discussed in this paper. The model is shown to qualitatively replicate downhole conditions and can be implemented in real-time, thereby making it suitable for autonomous directional drilling control.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In