0

Full Content is available to subscribers

Subscribe/Learn More  >

Repetitive Process Control of Laser Metal Deposition

[+] Author Affiliations
Patrick M. Sammons, Douglas A. Bristow, Robert G. Landers

Missouri University of Science and Technology, Rolla, MO

Paper No. DSCC2014-6173, pp. V002T35A004; 7 pages
doi:10.1115/DSCC2014-6173
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

The Laser Metal Deposition (LMD) process is an additive manufacturing process in which a laser and a powdered material source are used to build functional metal parts in a layer by layer fashion. While the process is usually modeled by purely temporal dynamic models, the process is more aptly described as a repetitive process with two sets of dynamic processes: one that evolves in position within the layer and one that evolves in part layer. Therefore, to properly control the LMD process, it is advantageous to use a model of the LMD process that captures the dominant two dimensional phenomena and to address the two-dimensionality in process control. Using an identified spatial-domain Hammerstein model of the LMD process, the open loop process stability is examined. Then, a stabilizing controller is designed using error feedback in the layer domain.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In