Full Content is available to subscribers

Subscribe/Learn More  >

A Low-Order HCCI Model Extended to Capture SI-HCCI Mode Transition Data With Two-Stage Cam Switching

[+] Author Affiliations
Patrick Gorzelic, Prasad Shingne, Jason Martz, Anna Stefanopoulou

University of Michigan, Ann Arbor, MI

Jeff Sterniak, Li Jiang

Robert Bosch LLC, Farmington Hills, MI

Paper No. DSCC2014-6275, pp. V002T34A005; 8 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME


A low-order homogeneous charge compression ignition (HCCI) combustion model to support model-based control development for spark ignition (SI)/HCCI mode transitions is presented. Emphasis is placed on mode transition strategies wherein SI combustion is abruptly switched to recompression HCCI combustion through a change of the cam lift and opening of the throttle, as is often employed in studies utilizing two-stage cam switching devices. The model is parameterized to a steady-state dataset which considers throttled operation and significant air-fuel ratio variation, which are pertinent conditions to two-stage cam switching mode transition strategies. Inspection and simulation of transient SI to HCCI (SI-HCCI) mode transition data shows that the extreme conditions present when switching from SI to HCCI can cause significant prediction error in the combustion performance outputs even with the model’s adequate steady-state fit. When a correction factor related to residual gas temperature is introduced to account for these extreme conditions, it is shown that the model reproduces transient performance output time histories in SI-HCCI mode transition data. The model is thus able to capture steady-state data as well as transient SI-HCCI mode transition data while maintaining a low-order cycle to cycle structure, making it tractable for model-based control of SI-HCCI mode transitions.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In