0

Full Content is available to subscribers

Subscribe/Learn More  >

Model Predictive Control for Compliant Pneumatic Systems

[+] Author Affiliations
Hannes G. Daepp, Wayne J. Book

Georgia Institute of Technology, Atlanta, GA

Paper No. DSCC2014-6206, pp. V002T33A003; 10 pages
doi:10.1115/DSCC2014-6206
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Pneumatic systems possess inherent compliance and potentially variable stiffness that make them an appealing actuator choice for tracking applications where contact and interaction are likely. However, good control of pneumatic systems is impeded by discontinuous and nonlinear dynamics, especially compliance and friction. The most successful previous solutions have either applied high-gain PD or sliding mode control. These achieve tracking control for compliant systems by transforming them into stiffer ones. Model predictive control can better balance precision tracking with compliance (low output impedance), so that the system is safer in case of collision disturbance. It can be coupled with a predictive observer that estimates friction as a known disturbance. The estimate is incorporated into the optimization, improving friction compensation for pneumatics, which has slow dynamics that do not react quickly enough with traditional feedforward compensation. Finally, predictive control enables constrained finite-time optimization, driving the system closer to its peak performance capability.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In