0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Switching Synthesis for Jump Linear Systems With Gaussian Initial State Uncertainty

[+] Author Affiliations
Kooktae Lee, Raktim Bhattacharya

Texas A&M University, College Station, TX

Paper No. DSCC2014-5877, pp. V002T24A003; 9 pages
doi:10.1115/DSCC2014-5877
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

This paper provides a method to design an optimal switching sequence for jump linear systems with given Gaussian initial state uncertainty. In the practical perspective, the initial state contains some uncertainties that come from measurement errors or sensor inaccuracies and we assume that the type of this uncertainty has the form of Gaussian distribution. In order to cope with Gaussian initial state uncertainty and to measure the system performance, Wasserstein metric that defines the distance between probability density functions is used. Combining with the receding horizon framework, an optimal switching sequence for jump linear systems can be obtained by minimizing the objective function that is expressed in terms of Wasserstein distance. The proposed optimal switching synthesis also guarantees the mean square stability for jump linear systems. The validations of the proposed methods are verified by examples.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In