0

Full Content is available to subscribers

Subscribe/Learn More  >

Parameterization and Validation of a Distributed Coupled Electro-Thermal Model for Prismatic Cells

[+] Author Affiliations
Nassim A. Samad, Jason B. Siegel, Anna G. Stefanopoulou

University of Michigan, Ann Arbor, MI

Paper No. DSCC2014-6321, pp. V002T23A006; 9 pages
doi:10.1115/DSCC2014-6321
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

The temperature distribution in a prismatic Li-ion battery cell can be described using a spatially distributed equivalent circuit electrical model coupled to a 3D thermal model. The model represents a middle ground between simple one or two state models (generally used for cylindrical cells) and complex finite element models. A lumped parameter approach for the thermal properties of the lithium-ion jelly roll is used. The battery is divided into (m × n) nodes in 2-dimensions, and each node is represented by an equivalent circuit and 3 temperatures in the through plane direction to capture the electrical and thermal dynamics respectively. The thermal model is coupled to the electrical through heat generation. The parameters of the equivalent circuit electrical model are temperature and state of charge dependent. Parameterization of the distributed resistances in the equivalent circuit model is demonstrated using lumped parameter measurements, and are a function of local temperature. The model is parameterized and validated with data collected from a 3-cell fixture which replicates pack cooling conditions. Pulsing current experiments are used for validation over a wide range of operating conditions (ambient temperature, state of charge, current amplitude and pulse width). The model is shown to match experimental results with good accuracy.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In