Full Content is available to subscribers

Subscribe/Learn More  >

Entropy Coefficient and Thermal Time Constant Estimation From Dynamic Thermal Cycling of a Cylindrical LiFePO4 Battery Cell

[+] Author Affiliations
Sergio Mendoza, Hosam K. Fathy

The Pennsylvania State University, University Park, PA

Paper No. DSCC2014-6176, pp. V002T23A005; 9 pages
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME


This paper presents a method for estimating (i) the reciprocal of the thermal time constant of a lithium-ion battery cell and (ii) the cell’s entropy coefficients for different states of charge. The method utilizes dynamic battery temperature cycling for parameter estimation. The paper demonstrates this method specifically for a cylindrical lithium iron phosphate (LiFePO4) cell. Identifying battery thermal parameters is important for accurate thermo-electrochemical modeling and model-based battery management. Entropy coefficients have been identified in previous research for various battery chemistries using calorimetric and potentiometric measurements requiring quasi-equilibrium conditions. This work, in contrast, fits the entropy coefficients and the reciprocal of the thermal time constant of a first-order thermal model to datasets collected in a noninvasive, dynamic experiment. This reduces the time required for parameter identification by a factor of 3 compared to traditional quasi-equilibrium experiments.

Copyright © 2014 by ASME
Topics: Entropy , Batteries



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In