0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrochemical-Thermal Modeling of Li-Ion Battery Packs

[+] Author Affiliations
Guodong Fan, Ke Pan, Alexander Bartlett, Marcello Canova, Giorgio Rizzoni

The Ohio State University, Columbus, OH

Paper No. DSCC2014-6082, pp. V002T23A004; 8 pages
doi:10.1115/DSCC2014-6082
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Lithium-ion batteries for automotive applications are subject to aging with usage and environmental conditions, leading to the reduction of the performance, reliability and life span of the battery pack. To this extent, the ability of simulating the dynamic behavior of a battery pack using high-fidelity electrochemical and thermal models could provide very useful information for the design of Battery Management Systems (BMS). For instance such models could be used to predict the impact of cell-to-cell variations in the electrical and thermal properties on the overall performance of the pack, as well as on the propagation of degradation from one cell to another.

This paper presents a method for fast simulation of an integrated electrochemical-thermal battery pack model based on first-principles. First, a coupled electrochemical and thermal model is developed for a single cell, based upon the data of a composite LiNi1/3Mn1/3Co1/3O2 – LiMn2O4 (LMO-NMC) Li-ion battery, and validated on experimental data. Then, the cell model is extended to a reconfigurable and parametric model of a complete battery pack. The proposed modeling approach is completely general and applicable to characterize any pack topology, varying electrical connections and thermal boundary conditions. Finally, simulation results are shown to illustrate the effects of parameter variability on the pack performance.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In