0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Forecasting Accuracy on the Sizing of Energy Storage

[+] Author Affiliations
Christina Jaworsky, Konstantin Turitsyn

Massachusetts Institute of Technology, Cambridge, MA

Scott Backhaus

Los Alamos National Laboratory, Los Alamos, NM

Paper No. DSCC2014-6113, pp. V002T22A005; 8 pages
doi:10.1115/DSCC2014-6113
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

The purpose of this research is to the problem of optimal sizing of energy storage required for compensation of wind farm generation variability. Using wind farm production data from the BPA, we assess the effect of forecast quality and economic dispatch timing on the size of storage and critical power rating required to nearly perfectly match the committed energy. We develop a Model-Predictive-Control (MPC) based operational model following NERC standard recommendations. Different forecasts are considered and compared from the storage sizing perspective. The results of our simulations can be fit by two simple relations, connecting the storage sizing with forecast error, wind variability, and the timescales of scheduling. A more accurate forecast reduces the storage sizing. However, diminishing returns are observed when the forecast error becomes comparable to natural wind variability within the commitment time interval. The proposed methodology can be extended to other systems with intermittent generation and controllable real or virtual storage.

Copyright © 2014 by ASME
Topics: Energy storage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In