0

Full Content is available to subscribers

Subscribe/Learn More  >

Energy Management and Control of a Hybrid Electric Vehicle With an Integrated Low Temperature Combustion (LTC) Engine

[+] Author Affiliations
Ali Solouk, Mahdi Shahbakhti

Michigan Technological University, Houghton, MI

Mohammad J. Mahjoob

University of Tehran, Tehran, Iran

Paper No. DSCC2014-6286, pp. V002T20A005; 10 pages
doi:10.1115/DSCC2014-6286
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Low Temperature Combustion (LTC) provides a promising solution for clean energy-efficient engine technology which has not yet been utilized in Hybrid Electric Vehicle (HEV) engines. In this study, a variant of LTC engines, known as Homogeneous Charge Compression Ignition (HCCI), is utilized for operation in a series HEV configuration. An experimentally validated dynamic HCCI model is used to develop required engine torque-fuel consumption data. Given the importance of Energy Management Control (EMC) on HEV fuel economy, three different types of EMCs are designed and implemented. The EMC strategies incorporate three different control schemes including thermostatic Rule-Based Control (RBC), Dynamic Programming (DP), and Model Predictive Control (MPC). The simulation results are used to examine the fuel economy advantage of a series HEV with an integrated HCCI engine, compared to a conventional HEV with a modern Spark Ignition (SI) engine. The results show 12.6% improvement in fuel economy by using a HCCI engine in a HEV compared to a conventional HEV using a SI engine. In addition, the selection of EMC strategy is found to have a strong impact on vehicle fuel economy. EMC based on DP controller provides 15.3% fuel economy advantage over the RBC in a HEV with a HCCI engine.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In