0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Fuel Economy of Hybrid Electric Vehicles Using Set Based Dynamic Programming

[+] Author Affiliations
Nikhil Ramaswamy, Nader Sadegh

Georgia Institute of Technology, Atlanta, GA

Paper No. DSCC2014-6170, pp. V002T20A004; 9 pages
doi:10.1115/DSCC2014-6170
From:
  • ASME 2014 Dynamic Systems and Control Conference
  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing
  • San Antonio, Texas, USA, October 22–24, 2014
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-4619-3
  • Copyright © 2014 by ASME

abstract

Dynamic Programming (DP) technique is an effective algorithm to find the global optimum. However when applying DP for finite state problems, if the state variables are discretized, it increases the cumulative errors and leads to suboptimal results. In this paper we develop and present a new DP algorithm that overcomes the above problem by eliminating the need to discretize the state space by the use of sets. We show that the proposed DP leads to a globally optimal solution for a discrete time system by minimizing a cost function at each time step. To show the efficacy of the proposed DP, we apply it to optimize the fuel economy of the series and parallel Hybrid Electric Vehicle (HEV) architectures and the case study of Chevrolet Volt 2012 and the Honda Civic 2012 for the series and parallel HEV’s respectively are considered. Simulations are performed over predefined drive cycles and the results of the proposed DP are compared to previous DP algorithm (DPdis). The proposed DP showed an average improvement of 2.45% and 21.29% over the DPdis algorithm for the series and the parallel HEV case respectively over the drive cycles considered. We also propose a real time control strategy (RTCS) for online implementation based on the concept of Preview Control. The RTCS proposed is applied for the series and parallel HEV’s over the drive cycles and the results obtained are discussed.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In